DAVID ETHERIDGE

Natural Ventilation of Buildings

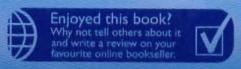
THEORY, MEASUREMENT AND DESIGN

Natural Ventilation of Buildings

THEORY, MEASUREMENT AND DESIGN

DAVID ETHERIDGE, Department of Architecture and Built Environment, University of Nottingham, UK

Natural ventilation is increasingly considered a prerequisite for sustainable buildings and is therefore in line with current trends in architecture and the construction industry. The design of naturally ventilated buildings is more difficult and carries greater technical risk than the design of mechanically ventilated buildings. A successful result relies on a good understanding of the abilities and limitations of the theoretical and experimental techniques that form the basis of design.


The underlying difficulties with design arise from the driving forces: wind and buoyancy. Equal prominence is given to these and to their combination. Their importance in relation to achieving the required ventilation strategies is one of the important issues that is covered in some detail.

Natural Ventilation of Buildings. Theory, Measurement and Design comprehensively explains the fundamentals of the theory and measurement of natural ventilation, as well as the current state of knowledge and how this can be applied to design. The book also relates theoretical and experimental techniques to problems faced by designers. Particular attention is given to the limitations of the various techniques and the associated uncertainties.

Key features

- Comprehensive coverage of the theory and measurement of natural ventilation
- Detailed coverage of the relevance and application of theoretical and experimental techniques to design
- Highlights the strengths and weaknesses of techniques and their errors and uncertainties
- Comprehensive coverage of mathematical models, including CFD
- Two chapters dedicated to design procedures and another devoted to the basic principles of fluid mechanics that are relevant to ventilation

This comprehensive account of the fundamentals for natural ventilation design will be invaluable to undergraduates and postgraduates who wish to gain an understanding of the topic for the purpose of research or design. The book should also provide a useful source of reference for more experienced practitioners in industry and architecture.

Contents

Preface				
Acl	knowl	edgem	ents	xix
Pri	ncipal	Notat	ion	xxi
1	Intro	ductio	on and Overview of Natural Ventilation Design	1
	1.1	Aims	and Scope of the Book	1
		1.1.1	Aims	1
		1.1.2	Scope	2
	1.2	Natur	al Ventilation in Context	3
			Hierarchy of Ventilation Systems	4
		1.2.2	Advantages and Disadvantages of Natural Ventilation	5
		1.2.3	55	6
	1.3		view of Design	6
		1.3.1	Overall Design Process	7
		1.3.2	Stage 1: Assessing Feasibility	7
		1.3.3	0 0,	7
		1.3.4	8	10
		1.3.5		11
		1.3.6	8	12
	1.4		on Sources	12
		1.4.1	Coverage of Recent and Past Developments	13
		1.4.2	Natural Ventilation and Safety	14
	Refere	ences		15
2	Phys	ical P	rocesses in Natural Ventilation	17
	2.1	Introd	luction	17
		2.1.1	Fundamental Principles of Fluid Mechanics	18
		2.1.2	Numerical Analysis and CFD	18
	2.2	The E	Effect of Gravity on Ventilation Flows	18
			Navier–Stokes Equations	19
		2.2.2	Hydrostatic and Piezometric Pressures	19
		2.2.3	Envelope Flows	21
		2.2.4	Internal Air Motion	21

viii

2.3	Types o	of Flow Encountered in Ventilation	23	
	2.3.1	Reynolds Number	23	
	2.3.2	Laminar Flow	23	
	2.3.3	Transitional Flow	23	
	2.3.4	Turbulent Flow	25	
2.4	Fluid N	Mechanics – Other Important Concepts and Equations	25	
	2.4.1	A Fluid as a Continuum	25	
	2.4.2	Transport Mechanisms	26	
	2.4.3	Momentum Principle - Newton's Laws of Motion	27	
	2.4.4	Momentum Equations for a Defined Body of Fluid and a		
		Control Volume	27	
	2.4.5	Hydrostatic Equation	28	
	2.4.6	Steady Flow	28	
	2.4.7	Mass Conservation for an Envelope	28	
	2.4.8	Bernoulli's Equation	29	
	2.4.9	Energy Equations for a System and a Fixed Control Volume	29	
	2.4.10	Loss Coefficient and Resistance Coefficient	30	
	2.4.11		31	
		Flow Separation	31	
		Irrotational Flow	32	
2.5	Steady	and Unsteady Ventilation	33	
2.6	Flow Through a Sudden Expansion			
	2.6.1	Momentum and Continuity Equations	34	
	2.6.2	Energy Equation	35	
	2.6.3	Diffusion (Molecular and Turbulent)	36	
2.7			37	
2.8		ransfer between Air and Envelope	39	
2.9		ions Relating to Ventilation Rate	41	
	2.9.1	Envelope Flows - Single Cell	41	
	2.9.2	Envelope Flows - Multi-cell Buildings	42	
	2.9.3	Measurement of Ventilation Rate	42	
	2.9.4	Effectiveness of Ventilation and Local Ventilation Rates	43	
2.10	Errors	and Uncertainties	43	
2.11				
	2.11.1	Envelope Flow Models (Chapters 4 and 5)	44	
		Zonal Models (Chapter 6)	44	
	2.11.3		44	
	2.11.4	•	45	
2.12	Bounda	ary Conditions	45	
	2.12.1	Velocity	45	
	2.12.2	Temperature	45	
Biblio	ography	•	46	
References			46	

3	Stead	ly Flow	V Characteristics of Openings	47
	3.1	Introd	uction	47
		3.1.1	Still-air Discharge Coefficient	48
		3.1.2	Installation Effects	48
	3.2	Classi	fication of Openings	48
		3.2.1	Shapes of Openings	49
		3.2.2	Sizes of Openings	51
		3.2.3	Reynolds Numbers Encountered in Practice	53
		3.2.4	Types of Opening	54
	3.3	Still-a	ir Discharge Coefficient	56
		3.3.1	Sharp-edged Orifices and Air Vents (Type 2)	56
		3.3.2	Long Openings - Adventitious (Type 1)	58
		3.3.3	Long Openings – Ducts and Chimneys (Type 3)	62
		3.3.4	Permeable (Porous) Materials – Dynamic Insulation (Type 1)	63
		3.3.5	Summary of C _d Relations	64
	3.4	Install	ation Effects on C_d	64
		3.4.1	Expected Effects of Cross-flow	66
		3.4.2	Observed Effects of Cross-flow	68
		3.4.3	Surface Openings that are Not Flush	73
		3.4.4	Installation Effects – Pressure Variations	75
	3.5	Openi	ngs in Combination	75
		3.5.1	Power Law and Quadratic Equation	76
		3.5.2	Envelope Leakage	77
	3.6	Determination of C_d		77
		3.6.1	Laboratory Measurement at Full Scale	78
		3.6.2	Wind Tunnel Measurement at Model Scale	81
		3.6.3	Application of Loss Coefficients	82
		3.6.4	CFD Calculations and Analytic Solutions	82
	3.7	Uncertainties in Design Calculations		
	3.8	Other Definitions of Discharge Coefficient		
	3.9	Large (and Very Large) Openings		84
		3.9.1	Large External Opening in an Otherwise Sealed Room	84
		3.9.2	Large Internal Opening Separating Two Spaces with Small	
			Openings	85
	3.10	Relev	rance to Design	86
	Refer	ences		86
1	Stead	iv Env	elope Flow Models	89
•	4.1			
		4.1.1	Conventional Envelope Flow Models	89 90
	4.2		Theory	91
		4.2.1	·	91
		4.2.2	Flow Equations	94
			Conservation of Mass for the Envelope	94
			Assumptions in Rasic Theory	95

5

4.3	Single- and Multi-cell Models		
	4.3.1	Single-cell Models	96
	4.3.2	Multi-cell Models	98
	4.3.3	Uniqueness of Solutions	99
	4.3.4	Steady Envelope Models and Slowly Varying Boundary Condi	tions 99
4.4	Simple	Analytic Solutions	100
	4.4.1	Analysis for Wind and Buoyancy	100
	4.4.2	Wind Alone	103
	4.4.3	Buoyancy Alone	104
	4.4.4	Wind and Buoyancy Combined	104
4.5	Non-ur	niform Density	106
	4.5.1	Buoyancy and Vertical Openings	108
4.6	Turbule	ent Diffusion	110
4.7	Large (Openings	111
4.8	Advent	itious Openings	111
4.9	Explici	t Method of Solution	112
	4.9.1	Effect of Wind with Upward Ventilation	113
	4.9.2	Effect of Wind with Top-down Ventilation	113
	4.9.3	Inclusion of Fans	116
4.10	Uncertainties in Envelope Flow Models		
	4.10.1	Purpose-provided Openings	116
	4.10.2	Adventitious Openings	117
	4.10.3	External and Internal Temperatures	117
	4.10.4	Wind Pressures	120
	4.10.5	Relative Importance of Wind and Buoyancy - Flow Patterns	120
4.11	Combined Envelope Models and Thermal Models		
	4.11.1	Simple Thermal Equilibrium Models	122
	4.11.2	Simple Dynamic Thermal Models	124
	4.11.3	•	125
	4.11.4	Combined Envelope Models and CFD	125
4.12	Models for Very Large Openings		126
	4.12.1		126
	4.12.2	Purely Empirical Approach	128
	4.12.3	Semi-empirical Approach	128
	4.12.4	CFD	129
4.13	Releva	nce to Design	129
Refe	rences		129
Unst	eady En	velope Flow Models	131
5.1	Introduction		131
5.2	Flow Equation		132
	5.2.1	Principle of Linear Momentum	132
	5.2.2	Quasi-steady Temporal Inertia Theory	134
	5.2.3	Support for the Assumptions	135
	5.2.4	Specification of Inertia Length l _e	138

	5.3	Pressure Difference across Openings		138
	5.4		Conservation Equation	139
	5.5	Envel	ope Flow Models	139
		5.5.1	QT Model	140
		5.5.2	Non-Dimensional Form of QT Model	140
		5.5.3	Important Non-dimensional Parameters	143
		5.5.4	Other Models	143
	5.6	Comp	parisons with Measurement	144
		5.6.1	Two Openings	144
		5.6.2	Multiple Openings	146
	5.7	Mean	Flow Rates	146
		5.7.1	Single Opening in a Sealed Room	147
		5.7.2	Two Openings with Wind and Buoyancy	149
	5.8			151
	5.9	Unste	ady Flow Models in Design	153
		5.9.1	Mean Flow Rates	153
		5.9.2	Instantaneous Flow Rates	154
		5.9.3	Multiple Openings	155
	5.10	Releva	ance to Design	155
	Refer	ences		155
6	Internal Air Motion, Zonal Models and Stratification			157
	6.1	Introd	luction	157
		6.1.1	Cases of Interest	158
		6.1.2	Comparison with Mechanical Ventilation Design	159
		6.1.3	Importance of Stratification	159
		6.1.4	Well-mixed Spaces and Uniform Temperature	160
	6.2	Governing Equations		160
		6.2.1	Mathematical Models	160
		6.2.2	Dimensional Analysis	161
	6.3	Prima	ry and Secondary Flows	162
		6.3.1	Jets	163
		6.3.2	Plumes	164
		6.3.3	Flow through Internal Doors	164
		6.3.4	Flows in Bounded Spaces	167
	6.4	Zonal	Models	168
		6.4.1	Primary Flow Models	169
		6.4.2	Secondary Flow Models	170
		6.4.3	Performance of Zonal Models (Secondary Type)	174
		6.4.4	Relevance of Zonal Models to Design	175
	6.5			
	6.6	Integr	rated Zonal and Envelope Flow Models	177
		6.6.1	Buoyancy Alone	177
		6.6.2	Wind and Buoyancy	179
		6.6.3	Relevance to Design	179